Для того, чтобы поступить хоть куда-нибудь, З. нужно сдать и русский язык, и математику как минимум на 70 баллов, а помимо этого еще сдать иностранный язык или обществознание не менее, чем на 70 баллов. Пусть А — сдает математику не менее, чем на 70 баллов В — сдает русский не менее, чем на 70 баллов С — сдает иностранный не менее, чем на 70 баллов D — сдает обществознание не менее, чем на 70 баллов Вероятность того, что он сможет поступить хотя бы на одну из двух упомянутых специальностей будет состоять из суммы вероятностей независимых событий: абитуриент сдаст Математика > 70 Русский > 70 Иностранный > 70 Обществознание > 70 Математика > 70 Русский > 70 Иностранный < 70 Обществознание > 70 Математика > 70 Русский > 70 Иностранный > 70 Обществознание < 70 Вероятности этих событий соответственно равны:
0,6∙0,8∙0,7∙0,5
0,6∙0,8∙0,3∙0,5
0,6∙0,8∙0,7∙0,5
Таким образом, вероятность поступить хотя бы на одну из специальностей равна: 0,6∙0,8∙0,7∙0,5 + 0,6∙0,8∙0,3∙0,5 + 0,6∙0,8∙0,7∙0,5 = = 0,48∙0,35 + 0,48∙0,15 + 0,48∙0,35 = = 0,48∙(0,35 + 0,15 + 0,35) = 0,48∙0,85 = 0,408
Ответ: 0,408