Даны шесть попарно пересекающихся прямых. Известно, что через точку пересечения любых двух прямых проходит по крайней мере еще одна из данных прямых. Докажите, что все эти прямые проходят через одну точку
спросил 23 Дек, 16 от снежко в категории школьный раздел


решение вопроса

+4

Решение. Пусть а1 и а2 — две из данных шести прямых — пересекаются в точке А.
По условию задачи через точку А проходит по крайней мере еще одна из данных прямых, которую обозначим а3 (рис.39). Докажем, что оставшиеся три прямые также проходят через точку А.
Допустим, что какая-то из них, например, прямая сц, не проходит через эту точку. Прямая сц по условию задачи пересекает каждую из прямыхa1 a2 a3. Обозначим точки пересечения буквами А\, A<i, А3 (см. рис.39).
Точки А\, А^, Ао, и А попарно различны, и по условию задачи через каждую из точек А1, А2, А3 должна проходить по крайней мере еще одна из данных прямых, отличная от a1 a2 a3 a4 Но это невозможно, так как даны всего шесть прямых.
Мы пришли к противоречию, поэтому наше предположение неверно и, следовательно, все данные прямые проходят через точку А.


ответил 23 Дек, 16 от viola

Связанных вопросов не найдено

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.