На рисунке 130 AB=АС, AP=AQ. Докажите, что: а) треугольник BОС — равнобедренный; б) прямая ОА проходит через середину основания ВС и перпендикулярна к нему
спросил 23 Дек, 16 от снежко в категории школьный раздел


решение вопроса

+4

Решение, а) Поскольку АВ = АС и АР = AQ, то ВР = CQ. Следовательно, треугольники СВР и BCQ равны по первому признаку равенства треугольников (ВР = CQ, сторона ВС у них общая, а углы СВР и BCQ равны как углы при основании равнобедренного треугольника ABC). Поэтому углы В и С треугольника ВОС равны, а значит, этот треугольник — равнобедренный.
б) Из рассуждений, приведенных в части а) решения, следует, что ВО = ОС. Следовательно, треугольники АВО и АСО равны по третьему признаку равенства треугольников. Поэтому луч АО является биссектрисой угла А. Но в равнобедренном треугольнике ABC биссектриса угла А является медианой и высотой. Таким образом, прямая О А проходит через середину основания ВС и перпендикулярна к нему.

ответил 23 Дек, 16 от viola

Связанных вопросов не найдено

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.