Прямая, проходящая через середину биссектрисы AD треугольника ABC и перпендикулярная к AD, пересекает сторону АС в точке М. Докажите, что MDII АВ
спросил 23 Дек, 16 от снежко в категории школьный раздел


решение вопроса

+1 голос

Решение. В треугольнике AMD (рис. 134) отрезок МО является медианой (так как прямая МО проходит через середину отрезка AD) и высотой (так как МО _L AD), поэтому треугольник AMD — равнобедренный с основанием AD, а значит, Z2 = Z3. Поскольку AD — биссектриса угла А, то Z2 = Z1. Но Z2 = Z3, поэтому Zl = Z3. Углы 1 и 3 — накрест лежащие углы при пересечении прямых АВ и DM секущей AD. Следовательно, АВ II DM.

ответил 23 Дек, 16 от viola

Связанных вопросов не найдено

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.