1) Из точки А к окружности с центром О и радиусом R проведена касательная. Докажите, что точка С касания лежит на основании равнобедренного треугольника ОАВ, у которого ОА = АВ, ОВ = 2R. 2) Проведите касательную к окружности, проходящую через данную точку вне окружности.
спросил 22 Дек, 16 от снежко в категории школьный раздел


решение вопроса

+4
1) ОС ⊥ АС по определению. Продлим ОС до точки В так, что СВ = ОС. В ΔОВА отрезок АС является высотой и медианой, так как ОС = ВС по построению, таким образом, ΔОВА — равнобедренный. Откуда АО = АВ и ОВ = 2ОС = 2R.
2) Проведем к данной окружности касательную, проходящую через данную точку А. Сначала соединим точки О и А.
Затем проведем окружности с центром О и радиусом 2R и ОА. Они пересекаются в двух точках В и В1.
ОВ и ОВ1 пересекают окружность в точках С и С1. Соединив их с точкой А, получим две касательные АС и АС1.
ΔОАВ и ΔОАВ1 — равнобедренные АС и АС1 — медианы, значит они являются и высотами. Таким образом, АС ⊥ ОС = R, АС1 ⊥ ОС1 = R, следовательно, АС и АС1 — касательные. Т.к. к окружности можно провести не более двух касательных (задача № 16 § 5), то построение закончено.
ответил 22 Дек, 16 от viola

Связанных вопросов не найдено

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.