1) Из одной точки проведены две касательные к окружности. Докажите, что отрезки касательных МР и MQ равны. 2) Докажите, что через одну точку не может проходить больше двух касательных к окружности
спросил 22 Дек, 16 от снежко в категории школьный раздел


решение вопроса

+4
1) В ΔОРМ и ΔOQM:
ОМ — общая,
ОР = OQ, как радиусы,
ОР ⊥ МР, OQ ⊥ MQ (т.к. МР и MQ — касательные).
Таким образом, ΔОРМ = ΔOQM по 1-му признаку равенства треугольников. Откуда МР = МQ.
2) Пусть через точку М можно провести три касательных к окружности: МР, MQ, МА. Тогда из п. 1 следует, что МР = MQ = MA, откуда точки Р, Q, А лежат на одной окружности с центром М. Получилось, что две окружности имеют три общие очки. Противоречие. В задаче 14 § 5 мы это доказали. Таким образом, через данную точку нельзя провести более двух касательных к данной окружности.
ответил 22 Дек, 16 от viola

Связанных вопросов не найдено

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.