В треугольнике ABC на стороне AB выбрана точка D, такая, что BD:BA=1:3. Плоскость, параллельная прямой AC и проходящая через точку D, пересекает отрезок BC в точке D1.  Докажите, что треугольник DBD1 подобен треугольнику ABC
спросил 22 Дек, 16 от снежко в категории школьный раздел


решение вопроса

+4
Решение.

Для доказательства воспользуемся теоремой Фалеса: "Параллельные прямые отсекают на секущих пропорциональные отрезки".

Поскольку плоскость, проходящая через точку D, которая пересекает отрезок BC в точке D1 параллельна прямой AC, то прямая DD1 принадлежащая этой плоскости, также параллельна прямой AC.

Согласно теореме Фалеса, "Параллельные прямые отсекают на секущих пропорциональные отрезки". То есть:

BD / AD = BD1 / D1C

Согласно второму признаку подобия треугольников "Если две стороны одного треугольника пропорциональны двум сторонам другого и углы между этими сторонами равны, то треугольники подобны".
В данном случае угол В у треугольников DBD1 и треугольника ABC является общим. Таким образом, треугольники подобны.
ответил 22 Дек, 16 от viola

Связанных вопросов не найдено

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.