Доказать, что если случайные величины Х1, Х2,…Хn независимы, положительны и одинаково распределены, то
MX1X1+X2+…+Xn=1n
спросил 17 Июль, 16 от Ирина в категории экономические


решение вопроса

+4
Лучший ответ
Решение.
Введем в расмотрение случайные величины
Y1=X1X1+X2+…+Xn, Y2=X2X1+X2+…+Xn, …,Yn=XnX1+X2+…+Xn. *
Заметим, что знаменатели этих дробей не могут быть равными нулю, поскольку величины Yi также одинаково распределены и, следовательно, имеют одинаковые числовые характеристики, в частности, одинаковые математические ожидания:
MY1=MY2=…=MYn. **
Легко видеть, что Y1+Y2+…+Yn=1, следовательно,
M(Y1+Y2+…+Yn)=M1=1.
Математическое ожидание суммы равно сумме математических ожиданий слагаемых, поэтому
MY1+MY2+…+MYn=1.
В силу (**) имеем nM(Y1)=1. Отсюда M(Y1)=1/n.
Учитывая (*), окончательно получим
MX1X1+X2+…+Xn=1n.
Что и требовалось доказать.
ответил 17 Июль, 16 от Евгения

Связанных вопросов не найдено

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.