Волновое уравнение (одномерное) имеет вид
 (*ответ*) Utt = a2Uxx
 Utt = a2(Uxx -Uyy + Uzz)
 Ut = a2(Uxx +Uyy + Uzz)
 U = a2(Uxx + Uyy)
Волновое уравнение в пространстве имеет вид
 (*ответ*) Utt = a2(Uxx +Uyy + Uzz)
 U = a2(Uxx + Uyy)
 Ut = a2(Uxx +Uyy + Uzz)
 Utt = a2(Uxx -Uyy + Uzz)
Волновое уравнение на плоскости имеет вид
 (*ответ*) Utt = a2(Uxx + Uyy)
 Utt + Uxx = Uy
 Utt + a2Uxx = 0
 Ut = a2(Uxx + Uyy)
Гиперболический тип имеет уравнение
 (*ответ*) 3Uxy + 4Uyy = 0
 3Uxx + 4Uyy = 0
 Uxx + 2Uxy + Uyy = 0
 3Uxx + 2Uxy + Uyy = 0
Гиперболический тип имеет уравнение
 (*ответ*) 5Uxx + 2Uxy  Uyy = 0
 Uxx + Uyy = 0
 4Uxx  8Uxy + 4Uyy = 0
 3Uxx + Uyy  Uxy = 0
Дифференциальное уравнение называется линейным, если
 (*ответ*) все неизвестные функции и их производные входят в уравнение в первой степени
 все неизвестные функции входят в уравнение в первой степени
 все переменные входят в уравнение в первой степени
 все независимые переменные входят в уравнение в первой степени
Область, в которой уравнение (y2  1)Uxx  2xUxy + Uyy = 0 имеет эллиптический тип, находится
 (*ответ*) внутри гиперболы –х2 + у2 = 1
 вне гиперболы –х2 + у2 = 1
 внутри гиперболы х2 - у2 = 1
Область, в которой уравнение xUxx + 2yUxy + Uyy = 0 имеет эллиптический тип, находится
 (*ответ*) внутри параболы у2 = х
 вне параболы у2 = х
 внутри параболы у2 = - х
 вне параболы у2 = - х
Область, в которой уравнение xUxx – yUxy + Uyy = 0 имеет гиперболический тип, расположена
 (*ответ*) вне параболы у2 = 4х
 внутри параболы у2 = 4х
 вне параболы у2 = - 4х
 внутри параболы у2 = - 4х
Порядком дифференциального уравнения называется
 (*ответ*) наивысший порядок производных, входящих в уравнение
 наивысшая степень функций, входящих в уравнение
 наивысшая степень переменных, входящих в уравнение
 наивысшая степень производных, входящих в уравнение
Решением уравнения Uxx + Uyy = 0 является функция
 (*ответ*) U = x2 – y2
 U = x2 + y2
 U = x2y
 U = x + y2
Решением уравнения Uxx - Uyy = 0 является функция
 (*ответ*) U = (x – y)2
 U = x2 – y2
 U = x2 + 2y
 U = 2x + 2y2
Решением уравнения Uxy = 0 является функция
 (*ответ*) U = x2 + y2
 U = xy
 U = x2y2
 U = (x –1)(y + 1)
Уравнение (x2 + 1)2Uxx + 2(x2 + 1)Uxy +Uyy = 0 имеет параболический тип
 (*ответ*) при всех (х, у)
 при всех (х, у), кроме (0, 0)
 при всех х и у  0
 при всех у  х  0
спросил 10 Ноя, 16 от zayn в категории экономические


решение вопроса

+4
Правильные вопросы выделены по тесту
тест уже прошел свою проверку
ответил 10 Ноя, 16 от zayn

Связанных вопросов не найдено

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.