MX = 1,5. Используя свойства математического ожидания, найдите M(2X+5).
Ответ дайте числом
(*ответ*) 8
MX = 5, MY = 2. Используя свойства математического ожидания, найдите M(2X - 3Y).
Ответ дайте числом
(*ответ*) 4
X и Y - независимы. DX = 5, DY = 2. Используя свойства дисперсии, найдите D(2X + 3Y).
Ответ дайте числом
(*ответ*) 38
Бросается 5 монет. Какова вероятность того, что выпадет 3 герба?
Ответ дайте числом в виде обыкновенной дроби a/b
(*ответ*) 5/16
Бросаются 2 кубика. Вероятность, что сумма выпавших очков равна 3, равна.
Ответ дайте в виде обыкновенной дроби a/b
(*ответ*) 1/18
Бросаются две симметричные монеты. Вероятность того, что выпадут и герб, и решка равна.
Ответ дайте десятичной дробью
(*ответ*) 0,5
В группе 25 студентов, из которых отлично учится 5 человек, хорошо - 12, удовлетворительно - 6 и плохо - 2. Преподаватель вызывает студента. Ка кова вероятность того, что вызванный студент или отличник или хорошист?
Ответ дайте в виде обыкновенной дроби a/b
(*ответ*) 17/25
В круг радиусом 20 вписан меньший круг радиусом 10 так, что их центры совпадают. Найти вероятность того, что точка, наудачу брошенная в большой круг, попадет также и в кольцо, образованное построенными окружностями. Предполагается, что вероятность попадания точки в круг пропорциональна площади круга и не зависит от его расположения
Ответ дайте десятичной дробью
(*ответ*) 0,75
В пирамиде 5 винтовок, 3 из которых снабжены оптическим прицелом. Вероятность попадания для стрелка при выстреле из винтовки с оптическим прицелом равна 0,95, из обычной
винтовки – 0,7. Стрелок наудачу берет винтовку и стреляет. Найти вероятность того, что мишень будет поражена.
Ответ дайте десятичной дробью
(*ответ*) 0,85
В среднем каждое сотое изделие, производимое предприятием, дефектное. Если взять 2 изделия, какова вероятность, что оба окажутся исправными?
Ответ дайте десятичной дробью (с точностью до трех знаков после запятой)
(*ответ*) 0,98
В тире лежат два ружья. Вероятность стрелку попасть из первого ружья 0,6.
Вероятность стрелку попасть из второго ружья 0,5. Стрелок заходит в тир, наугад берёт ружьё, три раза стреляет.
Р3 – вероятность попасть три раза.
Р2 – вероятность попасть два раза, один раз смазать.
Р1 – вероятность попасть один раз, два раза смазать.
Р0 – вероятность все три раза смазать.
Выберите верные утверждения
(*ответ*) Р0 = 0,0945
(*ответ*) Р1 = 0,3315
Р2 = 0,5035
Р3 = 0,4035
В тире лежат два ружья. Вероятность стрелку попасть из первого ружья 0,7. Вероятность стрелку попасть из второго ружья 0,6. Стрелок заходит в тир, наугад берёт ружьё,
два раза стреляет. Р0 – вероятность, что попаданий нет. Р1 – вероятность, что попал один раз.
Р2 – вероятность двух попаданий
(*ответ*) Р0 < 0,125
(*ответ*) Р1 < 0,45
(*ответ*) Р2 < 0,425
В тире лежат два ружья. Вероятность стрелку попасть из первого ружья 0,8. Вероятность стрелку попасть из второго ружья 0,6. Стрелок заходит в тир, наугад берёт ружьё,
два раза стреляет. Р0 – вероятность, что попаданий нет. Р1 – вероятность, что попал один раз.
Р2 – вероятность двух попаданий
(*ответ*) Р0 < 0,1
(*ответ*) Р1 < 0,4
В тире лежат два ружья. Вероятность стрелку попасть из первого ружья 0,9. Вероятность стрелку попасть из второго ружья 0,6. Стрелок заходит в тир, наугад берёт ружьё,
два раза стреляет. Р0 – вероятность, что попаданий нет. Р1 – вероятность, что попал один раз.
Р2 – вероятность двух попаданий
(*ответ*) Р0 < 0,085
(*ответ*) Р1 < 0,33
(*ответ*) Р2 < 0,585