12 шахматистов сыграли турнир в один круг. Потом каждый из них написал 12 списков. В первом только он, в (k+1)-м – те, кто были в k-м и те, у кого они выиграли. Оказалось, что у каждого шахматиста 12-й список отличается от 11-го. Сколько было ничьих?
спросил 13 Фев, 19 от цельсия в категории школьный раздел


решение вопроса

+8
Рассмотрим ориентированный граф, вершины которого – шахматисты, а стрелки ведут от выигравшего к проигравшему. Условие означает, что для каждого шахматиста есть другой, до которого можно добраться только по 11 стрелкам (это, в частности означает, что от каждого шахматиста можно добраться до любого другого). Рассмотрим такой путь: A1 выиграл у A2, A2 – у A3, ..., A11 – у A12. Заметим, что Ai  (1 < i < 12)  не мог выиграть у A1 (иначе от A2 можно было бы добраться до каждого не более чем по 10 стрелкам). Но кто-то у A1 выиграл (иначе до A1 вообще нельзя было бы добраться), значит, это – A12. Как и выше, показываем, что в полученном цикле каждый мог выиграть только у следующего.
Следовательно, результативных партий всего 12, а ничьих –  12•11 : 2 – 12 = 54.
Ответ. 54 ничьих.
ответил 13 Фев, 19 от аминна

Связанных вопросов не найдено

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.